
1

Triangular Alignment (TAME):
A Tensor-based Approach for

Higher-order Network Alignment
Shahin Mohammadi, David F. Gleich, Tamara G. Kolda, and Ananth Grama

Abstract—Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim
to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel
formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective
function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem,
which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor
eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to
maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex
networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench
dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further
evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment
methods both in terms of biological and topological quality of the alignments.

Index Terms—Graphs and networks, Optimization, Higher-order network alignment, Tensor Z-eigenpair, SS-HOPM

F

1 INTRODUCTION

MODELING cellular machinery as a network of interact-
ing biomolecules provides significant opportunities

for understanding and controlling various biological pro-
cesses. This complex network, or interactome, may include
direct relationships among biomolecules, such as physical,
regulatory, or signaling interactions, or indirect phenotypic
relationships such as epistatic interactions. One common
abstraction is a protein-protein interaction network (PPI),
which is an undirected graph where nodes represent pro-
teins and edges encode physical interactions among pairs
of proteins. Protein-protein interaction networks are exten-
sively used for modeling and understanding pathways and
protein complexes with respect to their organization and
function.

Network motifs are one means of identifying organiza-
tion and function in these networks. A network motif is
a connected subgraph that occurs with significantly higher
frequency compared to an ensemble of random graphs with
the same size and degree distribution. Over-representation
of these patterns are hypothesized to be related to their func-
tional significance [1]; and, indeed, network motif analysis
uncovers the fundamental circuits that are repeatedly used
to perform critical functions within the cell. Due to their
important role in decoding biological networks, various

• S. Mohammadi, D. F. Gleich, and A. Grama are with the Department of
Computer Science, Purdue University, West Lafayette, IN 47907
E-mail: {mohammadi, dgleich, ayg}@purdue.edu.

• T. G. Kolda is with the Sandia National Laboratories, Livermore, CA
94551.
E-mail: tgkolda@sandia.gov.

Manuscript received April 19, 2005; revised September 17, 2014.

algorithms have been proposed in literature for network
motif detection [2]–[6]. These methods have identified key
motifs, such as feed forward and feedback cycles in directed
networks and triangles in undirected graphs. Furthermore,
these motifs are shown to be involved in regulating cell
function, as well as influencing global network character-
istics [7]–[11].

Concurrent with the development of methods for net-
work motif detection, there has been ongoing work on
network alignment algorithms for identification of conserved
modules across networks. The goal of network alignment
is to identify a mapping between nodes of networks that
maximizes similarity (as defined by a suitable measure)
between mapped entities. These mappings can be used
to infer orthologies for unannotated proteins, as well as
transferring known biology regarding common pathways,
protein complexes, recurring building blocks, and missing
interactions. These conserved substructures are important
since cellular functions require all of their constituent com-
ponents (nodes and their interactions) to be conserved.
Conversely, conserved modules provide insights into cor-
responding functional organization [12].

The network alignment problem, unlike its counterpart
over sequences, is NP-complete to solve exactly, since in
the most generic form in can be reduced to the subgraph
isomorphism problem. However, different heuristics have
been proposed to address this complexity through suitable
reformulation, as well as incorporating additional data to
guide the alignment process. We survey these methods in
Section 2.3 in more detail. An important distinction among
alignment methods is their local versus global nature. Local
alignment methods aim to identify conserved functional
modules between networks, such as signaling pathways and

SAND2015-9891R

2

protein complexes, by optimally aligning these substruc-
tures. Due to duplication-divergence events, there can be
more than one match for each substructure, which makes
alignments ambiguous. Global network alignment, on the
other hand, aims to identify a one-to-one mapping between
all pair of nodes in the input graphs that maximizes similar-
ity of aligned nodes.

In this paper, we introduce a new class of methods based
on higher-order network alignment. These methods combine
strengths of both global and local network alignment. In this
framework, users can define any network motif structure
of interest to drive the alignment process. These general
structures can be represented through a motif tensor, in
which the order of tensor is the same as the size of the given
subgraph template. We encode the higher order network
using a tensor-based formulation and show that the exact
solution to the alignment problem is equivalent to solving
a higher-order integer program, which is NP-hard. To opti-
mize this NP-hard objective on large networks, we exploit
a bijection between the eigenpairs of the motif tensor and
a heuristic approximation of the integer program. We can
then use the previously proposed SS-HOPM [13] method
to identify maximizing dominant eigenpairs of a symmet-
ric tensor, and propose a higher-order alignment method
based on this scheme. The motif tensor of the alignment
graph can be represented as the Kronecker product of motif
tensors for each input graph. This tensor is too large to fit
in the memory for typical PPI networks, even for small
motifs. We develop a novel implicit kernel for computing
the tensor-vector product as the main operator within SS-
HOPM. Similar kernels have been previously proposed in
the context of computer vision research [14], [15]; however,
we present a highly efficient, motif-centered version that is
easily extendible to higher order sub-structures.

Using a case study of triangle motifs, we present a
complete algorithm, called Triangular AlignMEnt (TAME).
Furthermore, we propose a constrained variant of our al-
gorithm, cTAME, that operates only on a subset of reliable
nodes. This method provides better accuracy in cases where
a significant fraction of triangles in input graphs are false-
positives. We compare our method to the state-of-art meth-
ods for network alignment and illustrate its superior per-
formance on both synthetic datasets from NAPAbench [16]
and alignment of yeast and human interactomes. Our frame-
work can be easily extended to arbitrary subgraphs, and
suggests an alternative view to the network alignment prob-
lem.

2 NOTATIONS AND TERMINOLOGY

2.1 Graphs and Hypergraphs
Biochemical networks are often modeled as graphs in
which vertices (or nodes) represent biomolecules (proteins,
genes, etc.) and edges (or arcs) encode pairwise relation-
ships among them. Formally, a graph G is represented
by G = (VG ,EG), where VG is a finite set of vertices,
VG = {v1, v2,, vn}, and EG is a finite set of edges,
denoted by (vi, vj), such that EG ⊆ (VG×VG). We focus on
undirected graphs, where edges define a symmetric relation
among graph vertices. A graph can be represented by a
matrix AG of size |VG | × |VG |, known as the adjacency

matrix, in which AG(i, j) = 1 iff (vi, vj) ∈ EG . The graph
neighborhood for each node vi in the graph, represented
by NG(i), is defined as the set of nodes that have an edge
with vi; formally NG(i) = {j | (i, j) ∈ EG}. Given a pair of
graphs, G = (VG ,EG) and H = (VH ,EH), their Kronecker
product is a graph with |VG| × |VH | vertices in which there
is an edge between nodes ii′ and jj′ iff (i, j) ∈ EG and
(i′, j′) ∈ EH .

Hypergraphs are natural generalizations of graphs in
which the relations among vertices is not restricted to be
pairwise. Formally, a hypergraph is defined using the pair
G = (VG, EG), where V is the set of vertices and E is
the set of hyperedges. Here, each hyperedge defines a rela-
tionship among a nonempty subset of vertices. A k-uniform
hypergraph is a hypergraph in which the cardinality of each
hyperedge is exactly k. As such, 2-uniform hypergraphs
are equivalent to traditional graphs. A k-uniform hyper-
graph can be represented by a kth-order tensor TG, known
as the adjacency tensor, where TG(i1, i2, . . . , ik) = 1 iff
(i1, i2, . . . , ik) ∈ EG. The hypergraph incidence set for each
node vi in a k-uniform hypergraph, represented by NG(i),
is the set of (k− 1)-node subsets such that adding node i to
each subset forms an edge. This is one possible generaliza-
tion of a neighborhood to a hypergraph, and is formally de-
fined as NG(i) = {(i2, i3, . . . , ik) | (i, i2, i3, . . . , ik) ∈ EG}.
For a given graph G = (VG ,EG) and a given size k
structural motif M = (VM ,EM), where |VM | = k, we can
represent the occurrences of M in G by a k-way tensor
TG, referred to as the motif-tensor, where TG(i1, . . . , ik) = 1
iff the induced subgraph among vertices {vi1 , . . . , vik} in
G is isomorphic to M . Throughout this paper, we make
extensive use of a special case of the motif-tensor where
the substructure of interest is the triangle motif. Given
an undirected graph G, its triangle tensor, denoted by
4G, is a third-order tensor such that 4G(i, j, k) = 1 iff
(vi, vj), (vj , vk), (vk, vi) ∈ EG.

2.2 Tensor definition and properties

A real-valued mth-order n-dimensional tensor, denoted by
T [m,n], is a multiway array, whose entries can be indexed
using an m-dimensional tuple, and each tensor way (or
mode) has dimension n. An n-dimensional vector and
square matrix are examples of 1st-order and 2nd-order ten-
sors, respectively. We refer to elements of a tensor T [m,n]

using T (i1, i2, . . . , im) and Ti1,i2,...,im , interchangeably. A
tensor T is symmetric iff:

T (i1, i2, . . . , im) = T (iπ(1), iπ(2), . . . , iπ(m)) (1)

for all π ∈ Πm, where Πm is the set of all permutations of
(1, 2, . . . ,m). As an example, note that the triangle tensor is
a symmetric tensor.

Given a symmetric tensor T [m,n], together with an n-
dimensional vector x ∈ Rn, we concern ourselves with two
operations. The first is the tensor-vector product: T xm−1,
which is defined element-wise as

(T xm−1)i1 =
n∑

i2=1

n∑
i3=1

· · ·
n∑

im=1

Ti1,i2,...,imxi2xi3 . . . xim .

(2)

3

The second is the scalar polynomial form in x: T xm defined
as

T xm =
n∑

i1=1

n∑
i2=1

n∑
i3=1

· · ·
n∑

im=1

Ti1,i2,...,imxi1xi2xi3 . . . xim .

(3)
Note that xT (T xm−1) = T xm.

A pair (λ,x), λ ∈ R,x ∈ Rn, is the Z-eigenpair of the
symmetric tensor T , iff:

T xm−1 = λx; with ‖x‖2 = 1. (4)

Any eigenpair (λ,x) of tensor T is a Karush-Kuhn-Tucker
(KKT) point of the following nonlinear optimization prob-
lem [17]:

maximize
x∈Rn

T xm

subject to ‖x‖2 = 1.
(5)

We will use one additional concept: the Kronecker prod-
uct of tensors. This type of product is a reshaped version
of the well-established outer product for tensors. Formally,
given a pair of symmetric tensors, T1 ∈ R[m,n1], T2 ∈
R[m,n2], their Kronecker product, denoted by T1 ⊗ T2 ∈
R[m,n1n2], is defined as:

(T1 ⊗ T2)(i1i
′
1, . . . , imi

′
m) = T1(i1, . . . , im)T2(i′1, . . . , i

′
m)

(6)
with 1 ≤ i1, . . . , im ≤ n1, 1 ≤ i′1, . . . , i

′
m ≤ n2, and

the notation iki
′
k denotes a specific index for the index

representing the pair which is (ik − 1)n2 + i′k.

2.3 Overview of network alignment methods

Based on the alignment strategy, we can generally classify
different methods as either local or global alignment tech-
niques. Local alignment aims to identify common substruc-
tures corresponding to pathways or protein complexes that
are conserved in networks of different species. These align-
ments are consistent with duplication/divergence model of
evolution. However, they typically yield ambiguous map-
pings since functional building blocks can have many-to-
many relationships. On the other hand, global alignment
attempts to find the best overall mapping between the
nodes of input graphs that maximizes both functional and
topological similarity of aligned nodes, while enforcing the
one-to-one constraint. In pairwise alignment, this leads to
a unique alignment for each node in the smaller graph to a
maximum of one node in the larger graph. These alignments
are unambiguous and can be used to transfer functional
orthologies between pairs of proteins, as well as to compute
the overall similarity of input graphs.

Local alignment methods generally involve a scoring
function to evaluate a local alignment, and a search method
to identify high scoring alignments. PathBlast [19], [20] and
NetworkBlast [21], [22] are early examples that used a prob-
abilistic scoring function. Flannick et al. [23] proposed an
evolutionarily-motivated scoring function and incorporated
known alignments via a supervised learning scheme [24].
Koyuturk et al. [25], [26] instead poses the local alignment as
a suitably formulated optimization problem in their MaW-
ish framework. All of these methods can be tuned to seek
local alignments of particular motifs by customizing their

scoring and search functions. However, they all suffer the
amiguity that results from local alignment.

In the class of global network alignment techniques,
there are two prominent paradigms. The first is exemplified
by the early method IsoRank [27], [28]. The main idea
behind IsoRank is that a pair of nodes corresponds to a good
match if the nodes are homologous and their respective
neighborhoods are similar. This recursive scheme is then
cast as an eigenvalue problem, the solution of which is
identified using power method. More generally, these meth-
ods utilize heuristic approximations of the alignment on the
joint topology of the product graph and relationships with
optimization problems, as proposed by Klau et al. [29], [30]
and Bayati et al. [31]. Bayati et al. include optimizations that
restrict the search space to the subset of promising candi-
dates for which there is an evidence of sequence similarity.
The second class is exemplified via GRAAL [32]–[35] and is
based on the notion of computing distances between local
signatures to indicate topological similarity. Patro et al. [36]
proposed a novel topological signature that is based on
the spectrum of the normalized Laplacian for the induced
subgraph around each node. Many of these methods include
specific techniques to turn the topological information into
a one-to-one alignment.

The methods proposed in this paper follow the global
alignment paradigm more closely but incorporate some
aspects of the local alignment ideas through the specification
of the alignment motif.

3 HIGHER-ORDER NETWORK ALIGNMENT

Our framework for higher-order network alignment draws
heavily on the integer quadratic program for global network
alignment. We begin by reviewing this formulation [29]–
[31].

3.1 Formulation of global network alignment as a Bi-
nary Quadratic Program (BQP)
Given a pair of networks, represented by G = (VG,EG)
and H = (VH ,EH), the global network alignment problem
aims to find an optimal one-to-one mapping between ver-
tices of G and H that maximizes both the prior (known)
similarity and a topological similarity among pairs of
aligned nodes. The topological similarity is the number of
edges preserved in both G and H under the matching.

Let W represent the known similarity between graph G
and H where W(i, i′) is positive if there is some additional
belief that node i in G will map to node i′ in H and 0
otherwise. (Here, we use notation where i or i′ refers both
to a row or column, respectively, of the matrix W as well
as a vertex in G or H .) In the case of aligning protein-
protein interaction networks, W is often constructed from
the sequence similarity of genes or proteins corresponding
to each node pair in G and H . Other measures to encode
known prior similarities have also been proposed, including
structural similarity of proteins, co-pathway memberships,
and GO semantic similarities. In this paper, we use W to
encode sequence similarities computed using the Smith-
Waterman algorithm, as described in Section 4.1.2.

The matching solution variable is a binary indicator
matrix X, where X(i, i′) = 1 if node vi ∈ G is matched

4

to node vi′ ∈ H , and 0 otherwise. Then the global network
alignment problem is equivalent to:

maximize
X∈Z|VG|,|VH |

2

(1− α) ·
∑

i∈VG,i′∈VH

X(i, i′)W (i, i′)

︸ ︷︷ ︸
known similarity

+

α · 1

2

∑
i∈VG,i

′∈VH

j∈VG,j
′∈VH

X(i, i′)X(j, j′)AG(i, j)AH(i′, j′)

︸ ︷︷ ︸
topological similarity

subject to∑
i′∈VH

X(i, i′) ≤ 1 for all i ∈ VG
(each node in VG is matched to only 1 in VH)∑

i∈VG
X(i, i′) ≤ 1 for all i′ ∈ VH

(each node in VH is matched to only 1 in VG).
(7)

Under the contraints of the problem, the topological simi-
larity term X(i, i′)X(j, j′)AG(i, j)AH(i′, j′) is 1 if node i is
mapped to node i′, node j is mapped to node j′, and edges
(i, j) and (i′, j′) exist in G and H , respectively. Note that
because of symmetry in AG, AH , this expression double-
counts the aligned edge and hence we divide the total count
by 2 to get the topological similarity.

It is convenient to introduce some additional notation
to simplify the statement of this problem and explain our
generalization. We first define a canonical labeling on the
pairs of vertices from these graphs:

` : (VG, VH) 7→ a unique integer index in {1 · · · |VG| · |VH |},
(8)

that is, `(i, i′) returns a unique index that represents the
pair of vertices i ∈ VG and i′ ∈ VH . We typically use
`(i, i′) = (i′ − 1)|VG| + i, a columnwise vectorization of
X. This labeling is used to turn the matrices X and W into
vectors. Let x = vec(X) be a representation of the matrix
X as a length |VG||VH | vector where x(`(i, i′)) = X(i, i′).
When clear from context, we use the shorthand:

x`(i,i′) ↔ xii′ . (9)

For instance, the known similarity objective then becomes:∑
i∈VG,i′∈VH

X(i, i′)W (i, i′)↔
∑
ii′

xii′wii′ . (10)

To represent the matching constraint on x, we define matrix
C ∈ {0, 1}(|VG|+|VH |)×|VG||VH |, where each row represents a
vertex in either G or H and columns encode potential pairs
of vertices between the two graphs. Formally we can write
this as:

C =

[
CG

CH

]
where

CG(i, `(i, i′)) = 1 for all i ∈ VG, i′ ∈ VH
CH(i′, `(i, i′)) = 1 for all i ∈ VG, i′ ∈ VH

(11)

where CG,CH are zero everywhere else. Put yet another
way, C is the node-edge incidence matrix of the complete
bipartite graph on |VG| and |VH | vertices where the edge
order is given by the labeling `. Using the matrix C, the two
sets of matching constraints are written: Cx ≤ 1|VG|+|VH |,
where 1|VG|+|VH | is a vector of all ones of length |VG|+ |VH |.

Finally, we introduce one additional binary matrix S of
size |VG||VH | × |VG||VH | to describe the set of potentially
aligned edges in order to compute the topological similarity.
We index the rows and columns of this symmetric matrix
using a pair of vertices from graph G and H ; and, hence,
our labeling function `. Let S(ii′, jj′) = 1, if (i, j) ∈ EG and
(i′, j′) ∈ EH , and 0, otherwise. Using this notation, the total
number of conserved edges under alignment represented
by x can be computed as 1

2x
TSx. Note that when ` results

from a columnwise vectorization of the matrix X then S =
AH ⊗AG for the Kronecker product.

Using this new notation, we can write the global network
alignment as the following binary quadratic program (BQP):

maximize
x

(1− α)wTx +
α

2
xTSx

subject to Cx ≤ 1|VG|+|VH |
x(ii′) ∈ {0, 1}.

(12)

This problem is also equivalent to a binary linear program
through a standard linearizing transformation [29], [31].
Different global alignment methods can be viewed as algo-
rithms that either implicitly or explicitly optimize this BQP
formulation.

3.2 The higher-order generalization
We generalize the node alignment solutions proposed ear-
lier to the problem of aligning higher-order substructures in
graphs. As previously mentioned, this is motivated by the
existence of motifs in biological networks. In what follows,
we assume that the labeling ` results from a columnwise
vectorization of the matrix X so we can exploit relationships
with the Kronecker product. Let TG and TH be the motif-
tensors associated with a motif M in both graphs G and H ,
where this motif has m-nodes. Then the higher-order net-
work alignment problem is the binary polynomial problem:

maximize
x

(1− β)wTx +
β

m!
(TH ⊗ TG)xm

subject to Cx ≤ 1|VG|+|VH |
x(ii′) ∈ {0, 1}.

(13)

This problem can again be converted into a binary linear
program through a standard linearization procedure on the
higher-order polynomials, but that is tangential to our dis-
cussion here. As a generalization of the network alignment
problem, this problem is NP-hard as well.

In this paper, we focus on triangle motifs, which are
special cases of feed-forward/backward motifs. Please note
that our method is general, and can be applied to arbitrary
motifs. Denote the triangle tensor of graph G and H using
4G and 4H , respectively. Also, denote the triangle tensor
for the product graph by 4H×G = 4H ⊗ 4G. Using this
notation, we can write the higher-order network alignment
problem as a binary cubic program:

maximize
x

(1− β)wTx +
β

6
(4H×G)x3

subject to Cx ≤ 1|VG|+|VH |
x(ii′) ∈ {0, 1}.

(14)

In this formulation,4H×Gx3 counts the number of triangles
that are conserved under the alignment represented by vec-
tor x, and wTx plays a similar role as in BQP formulation
of global alignment.

5

We propose a few heuristic procedures to optimize this
objective. First, we remove the one-to-one constraint on x
from the optimization problem. Second, we note that the
relaxation of this problem over the set of real values coin-
cides with the eigenvectors of tensor4H×G, as presented in
Equation 5. In this case, there is a known algorithm, called
shifted symmetric higher-order power method (SS-HOPM) [13],
which can be used to identify eigenpairs of 4H×G with
large eigenvalues. Third, we incorporate sequence similar-
ities encoded by w by starting iterations from x0 = w.
Finally, we take the real-valued solution from SS-HOPM
and form a matrix X that we use an input to a maximum-
weight bipartite matching procedure to generate a one-to-
one matching.

We now describe a number of ways to exploit the
structure of the problem in this setup for a more efficient
computer implementation. The fundamental computational
difficulty is manipulating the tensor 4H×G. A straightfor-
ward application of SS-HOPM on this tensor would utilize
a data structure that consumes 55 TB of memory (this
exploits sparsity alone, like traditional graph algorithms).
To see how this structure balloons in size, consider the
case of aligning the yeast and human interactomes. These
networks have 347, 079 and 407, 650 triangles, respectively.
If we store the non-zeros in a sparse tensor representation
of4H×G using three 32-bit indices per non-zero, it requires
(347,079 × 407,650 motifs) × (36 symmetry non-zeros
per motif) × (12 bytes per non-zero) ≈ 55.5 terabytes of
memory to store the product tensor (or 1.5 terabytes, if we
exploit the symmetry). Forming the full non-zero structure,
however, is unnecessary as we only need to use this tensor
to compute the tensor-times-vector operation, and this can
be done implicitly without forming the complete stucture.
Before we explain this optimization, we first discuss some
of the symmetries in the tensor we can use to reduce storage.

3.3 Using symmetry in triangle tensor
We note that there is a high degree of redundancy in a
symmetric tensor T . In general, the maximum number
of unique elements in a mth-order n-dimensional tensor,
T ∈ R[m,n] is given by [37]:(

m+ n− 1

m

)
=

nm

m!
+O(nm−1). (15)

For the special case of motif-tensors for a graph G with
n vertices, we note that all entries for which at least two
of the indices are the same would be zero. Each nonzero
element in TG, for which none of (i1, . . . , im) indices are
equal, is repeated exactly m! times. We can use this property
to enhance the computation time of TGxk and TGxm−1,
which are basic kernels in SS-HOPM, by computing each
redundant element only once and adjusting the sum by the
number of repetition. Specifically, when computing T xm−1,
we have:

(T xm−1)i1 =
∑

i2,...,im

Ti1,...,imxi2 · xi3 · . . . · xim . (16)

However, any permutation of indices i2, . . . , im ∈ Πm−1
yields an identical term in this summation. To use this
property, we can define a canonical labeling for i2, . . . , im

and compute it only once, and then multiply the overall
sum by (m−1)!. We will use this property to further reduce
the computation time of our algorithm for the special case
of triangle tensors.

3.4 An implicit kernel for computing tensor-vector
products
Before we present the full TAME algorithm, we need one
additional building block for computing the tensor-vector
product. The key challenge is that the number of elements
in the triangle tensor of product graph, 4H×G, is too large
to fit in the memory of most modern computers, even for rel-
atively small graphs. To remedy this problem, we note that
there is no need to explicitly construct 4H×G. All we need
to run SS-HOPM is to compute4H×Gx3 and4H×Gx2. Re-
writing the tensor-vector product formulation in Equation 2,
we find the following vertex-centered, implicit kernel as
follows:

(4H×Gx2)ii′

=
∑
jj′,kk′

4H×G(ii′, jj′, kk′)x(jj′)x(kk′)

=
∑

j,j′,k,k′

4G(i, j, k)4H(i′, j′, k′)X(j, j′)X(k, k′)

=
∑
j,k

4G(i, j, k)
∑
j′

X(j, j′)
∑
k′

4H(i′, j′, k′)X(k, k′)

(17)
where X = unvec(x). Additionally, we can simplify this
vertex-centered formulation to derive a more efficient motif-
centered kernel. To this end, we note that triangle tensors of
graphs G and H represent a 3-uniform hypergraph over the
set of vertices VG and VH , respectively. Denote the hyper-
graph incidences of these hypergraphs by N4G

and N4H
,

where N4G
(i) = {(j, k) | (vi, vj), (vj , vk), (vk, vi) ∈ EG},

and N4H
(i′) = {(j′, k′) | (vi′ , vj′), (vj′ , vk′), (vk′ , vi′) ∈

EH}. Then

4H×Gx2(ii′) =

2
∑

(j,k)∈N4G
(i)

∑
(j′,k′)∈N4H

(i′) X(j,j′)X(k,k′)+X(j,k′)X(k,j′). (18)

In this formulation, we also make use of the symmetric
property of triangle tensors. The outer factor of 2 corre-
sponds to the (m − 1) degree of symmetries, introduced in
Section 3.3. The inner summation accounts for the fact that
nodes vj and vk from G, or vertices {vi2 , . . . , vik} when
dealing with motif-tensors of size k, can be mapped to their
counterpart vertices vj′ and vk′ in H in (m − 1)! different
ways. Each of these mappings contribute a factor of one in
4H×G. However, their corresponding x values are different
and we need to separately compute their product. We use
this motif-centered formulation in our final algorithm to
compute the implicit tensor-kernel product, x̃ = 4H×Gx2.
Having x̃, one can easily compute 4H×Gx3 = xT x̃. The
simplified pseudo-code of the implicit kernel for computing
4G×Hx2 is provided in Algorithm 1. The computation time
of this algorithm is of O(|4G| × |4H |).

3.5 Triangular AlignMEnt (TAME) algorithm
We now integrate different building blocks introduced ear-
lier to present a higher-order alignment method for trian-

6

Algorithm 1 Implicit tensor-times-vector product (impTTV)
Input: Triangle-tensors 4G,4H , for G and H ; a vector x
Output: y = 4H×Gx2

1: X = unvec(x)
2: Y = 0
3: for vi ∈ VG do
4: for vi′ ∈ VH do
5: for {(j, k) ∈ N4G

(i)} do
6: for {(j′, k′) ∈ N4H

(i′)} do
7: Y(i, i′)+=X(j, j′)X(k, k′) + X(j, k′)X(k, j′)
8: end for
9: end for

10: Y(i, i′) = Y(i, i′) ∗ 2
11: end for
12: end for
13: y = vec(Y)

gle motifs. This code uses one additional primitive. The
function score solves a bipartite maximum-weight matching
problem (using the Hungarian method) and returns the total
number of triangles t aligned by the matching. The pseu-
docode for TAME algorithm is presented in Algorithm 2.
The final alignment results from running one additional
maximum-weight bipartite matching on the returned topo-
logical similarity scores X.

Algorithm 2 The Triangular AlignMEnt (TAME) algorithm
Input: Triangle tensors 4G,4H ; Sequence similarities w;

Shift parameter α
Output: The best topological scores X from any iteration

1: k = 0 {Iteration number}
2: w ← w/‖w‖
3: x0 = w
4: t0 = 0
5: repeat
6: x̃k+1 = impTTV(4G,4H ,xk)
7: λk+1 = xTk x̃k+1

8: x̂k+1 = x̃k+1 + αxk
9: xk+1 = x̂k+1

‖x̂k+1‖
10: Xk+1 = unvec(xk+1)
11: tk+1 = score(Xk+1)
12: Update (X, t)best to (X, t)k+1 if tk+1 > tbest
13: k = k + 1
14: until λk − λk−1 is small or the max iteration is hit
15: return Xbest

The overall algorithm takes in the prior similarity and
uses that as the starting interation of the SS-HOPM pro-
cess (lines 5-14). In that process, impTTV uses the motif-
centered, implicit tensor-times-vector kernel proposed in
Section 3.4. The SS-HOPM loop generates a sequence of
topological similarity matrices. However, the SS-HOPM
process generates a sequence to optimize the problem after
removing the two constraints in Equation 14, namely the
integer constraint on x and the one-to-one matching con-
straint over X. To enforce these constraints, we perform a
matching in each iteration of the algorithm and generate a
score on the iterate that returns the aligned triangle count.
We keep the highest scoring topological matrix as Xbest.

In addition to Algorithm 2, which we refer to as full
TAME, we present a variant of this algorithm, called con-
trained TAME, which only matches nodes that have at
least one match suggested by the prior alignment. In this
formulation, we must update 4G and 4H prior to running
the full TAME algorithm. The key idea is to remove triangles
for which at least one of the end-points has no homology
suggested by the sequence similarity. This allows us to
focus on the most promising regions of the graph. The
contrained TAME method is presented in Algorithm 3. In
this algorithm, we first compute a pair of indicator vectors,
wr and wc with size |VG| and |VH |, respectively. Each
element i in wr indicates if vertex vi ∈ VG has at least
one homolog among vertices of H and, similarly, each
element i′ in wc indicates if vertex vi′ ∈ VH has at least
one homolog among vertices of G (determined by the prior
similarity). The “.*” operator is the element-wise product
of two tensors. Finally, we prune the triangle tensors by
enforcing that all end-points of every triangle motif should
have at least one homolog in the other graph. An equivalent
way of understanding this algorithm is that we first remove
vertices from G and H that have no prior information
indicating there is a match in the other graph.

Algorithm 3 The contrained Triangular AlignMEnt
(cTAME) algorithm
Input: Triangle tensors 4G,4H ; Sequence similarities w;

Shift parameter α
Output: The final set of aligned node pairs 〈mi,m

′
i〉

1: W = unvec(w)
2: wG = indicator vector for rows of W with non-zeros
3: wH = indicator vector for cols of W with non-zeros
4: WG = wG ⊗wG ⊗wG

5: WH = wH ⊗wH ⊗wH

6: 4(contrained)
G = 4G. ∗WG

7: 4(contrained)
H = 4H . ∗WH

8: X = TAME(4(contrained)
G ,4(contrained)

H ,w, α)

This algorithm has the side-effect of reducing the total
number of triangles (see Table 2), resulting in a faster
execution time. In many cases, it also outperforms the full
version of TAME in terms of alignment quality by focusing
the search in more promising regions. We discuss the pros
and cons of each of these methods in Section 4

4 RESULTS AND DISCUSSION

4.1 Datasets
4.1.1 Synthetic Datasets and Random Networks
NAPAbench [16], is a family of random graphs that has
been proposed for evaluating network alignment meth-
ods on synthetic datasets. This dataset contains both pairs
of networks for evaluating pairwise alignment methods,
as well as group of networks for testing multiple align-
ment algorithms. There are three random graph generation
models employed by NAPAbench: (i) duplication-mutation-
complementation (DMC), (ii) duplication with random mu-
tation (DMR), and (iii) crystal growth (CG). These ran-
dom networks mimic key properties of biological graphs,
including their network topology and modular structure.

7

TABLE 1
Summary statistics for the NAPAbench dataset

nodes Mean # edges Mean # triangles

Graph A 3,000 11,985 11,362
Graph B 4,000 15,985 15,880

TABLE 2
Summary statistics for yeast and human interactomes.

nodes # edges # triangles

Human 14,867 126,593 407,650
Yeast 5,850 79,458 347,079

constrained Human 10,624 88,276 251,555
constrained Yeast 5,482 73,739 289,893

We focus on the crystal growth (CG) dataset, which is
based on a newer model that better fits features of real
PPI networks, including their characteristic age distribu-
tion [38]. This dataset contains 10 pairs of graphs, for which
the known orthology and simulated sequence similarities
between pairs of nodes are available. Each pair consists of
a first graph A with 3, 000 nodes and a second graph B
with 4, 000 nodes. These two networks share a common
ancestor of size 2, 000 and have been evolved independently
after that. Edge and triangle statistics for these graphs are
summarized in Table 1

4.1.2 Yeast Versus Human Interactome Dataset

Both yeast and human protein-protein interaction (PPI)
networks were constructed from BioGRID database, version
3.2.103. All physical interactions, excluding self-loops and
interspecies interactions, have been filtered and mapped to
Entrez gene IDs. We used these interaction evidences to
construct the adjacency matrix for both graphs. Edge and
triangle statistics for each network are presented in Table 2.

We downloaded the protein sequences for the yeast and
humans genes in FASTA format from Ensembl database,
release 69. These datasets are based on the GRCh37 and
EF4 reference genomes, each of which contain 101,075 and
6,692 protein sequences for H. Sapiens and S. Cerevisiae,
respectively. Each human gene in this dataset has, on av-
erage, around 4 protein isoforms. We identified and masked
low-complexity regions in protein sequences using pseg
program [39]. The ssearch36 tool, from FASTA [40] version 36,
was then used to compute the local sequence alignment of
the protein pairs using the Smith-Waterman algorithm [41].
We used this tool with the BLOSUM50 scoring matrix to
compute sequence similarity of protein pairs in humans and
yeast. All sequences with E-values less than or equal to 10
are recorded as possible matches, which results in a total of
664,769 hits between yeast and human proteins. For genes
with multiple protein isoforms, coming from alternatively
spliced variants of the same gene, we only record the most
significant hit. The final dataset contains 162,981 pairs of
similar protein-coding genes. After mapping these pairs to
the human and yeast interactomes, we were able to find
matches for 127,505 node pairs in these networks.

4.2 Benchmark Methods

To evaluate TAME, we compare it against three different
methods: (i) IsoRank [28], (ii) Belief Propagation (BP) [42],
and (iii) GHOST [36]. We use IsoRank because it is one
of the most widely used global network aligners in the
literature. We use GHOST due to its similarity with full
version of TAME in computing topological similarities inde-
pendently from sequence similarities. We include BP in our
comparison because it optimizes the alignment procedure
by truncating the search space to only subsets of possible
homologs. Additionally, we tried H-GRAAL [33] as it pro-
vides topological similarities similar in nature to TAME and
GHOST; however, the graphlet signature computation phase
had an estimated time of more than a year. Thus, we had to
exclude this algorithm from our experiments.

For a fair comparison of different alignment methods,
we treat each method as producing a real-valued similarity
matrix S(i, i′) between the nodes of G and H . This sepa-
rates the computation phase from the matching phase, as
also proposed by Kollias et al. [43]. We use the Hungarian
maximum weight bipartite matching algorithm as the final
matching block for all methods. The details of how this
works is explained below for each of the methods.

We use the versions of IsoRank and Belief Propagation
as described and implemented in Bayati et al. [31]. IsoRank
runs iterations of the PageRank method on the Kronecker
product graph AH ⊗ AG using a seed or localization vec-
tor derived by normalizing the sequence similarities to a
probability distribution. At each step, the method solves
a maximum weight bipartite matching problem to score
the current heuristic alignment and picks the best score
from any iteration, just like TAME. The BP method runs an
iterative message passing algorithm on a graphical model
that represents the network alignment problem restricted
to the set of potential matches induced by the sequence
similarity matrix W. Again, the method solves a maximum
weight bipartite matching problem at each step to score the
current iterate and picks the best.

For GHOST, we provide some details on the method in
the appendix because our implementation differs from that
given by the authors’ software. We modified the method
to establish a fair comparison between the amount of topo-
logical methods the various methods extract. The authors
of GHOST spent considerable effort designing a custom
procedure tuned to the nature of their topological informa-
tion to identify an accurate one-to-one matching. The point
of our experiments is that TAME provides rich topological
information with a simple matching strategy. Consequently,
we use the GHOST procedure to estimate a topological
similarity matrix Stopo(i, i′) with large entries if there is a
high topological similarity between vertex vi ∈ VG and
vi′ ∈ VH . We then use a convex combination of topological
and sequence similarity to procedure a network alignment
heuristic:

XGHOST-Topo(i, i′) = αStopo(i, i′) + (1− α)W(i, i′). (19)

As with the other methods, we solve a maximum weight
bipartite matching problem on XGHOST-Topo(i, i′) to produce
the alignment.

8

4.3 Evaluation Criteria
For each resulting alignment, we separately assess the
topological quality of the alignment graph, as well as the
biological relevance of aligned nodes in the input graphs.
Additionally, for the NAPAbench synthetic dataset, we di-
rectly compute the percent of correctly aligned node pairs.
Let m(ii′) be an indicator to denote that vertex vi ∈ VG is
matched to vi′ in VH . The description of different perfor-
mance measures are as follows:

4.3.1 Node Correctness (NC)
This measure is only defined for synthetic cases for which
the true-alignment is known a priori. For NAPAbench, there
is a shared ancestor core of 2, 000 nodes between paired set
of networks. In this case, the node correctness is defined
as the percent of these 2, 000 node pairs that are correctly
aligned by each alignment method.

4.3.2 Edge Correctness (EC)
After constructing the alignment graph, we can compute the
total number of conserved edges from the edge-set of the
alignment graph, i.e. EA = {(ii′, jj′) | (i, j) ∈ EG, (i′, j′) ∈
EH , and m(ii′) = m(jj′) = 1}. After normalizing this
count, we can define edge correctness as follows:

EC = 100 · |EA|
min(|EG|, |EH |)

. (20)

Note that despite the name, edge correctness only measures
the fraction of possible edges aligned, not the fraction of
accurately aligned edges.

4.3.3 Triangle Correctness (TC)
Similar to edge correctness, triangle correctness is defined
on the basis of total number of conserved triangles. It can be
represented with respect to the triangle-set of the alignment
graph, TA = {(ii′, jj′, kk′) | (i, j, k) ∈ TG, (i

′, j′, k′) ∈
TH , and m(ii′) = m(jj′) = m(kk′) = 1}. After normaliz-
ing this count, we can define triangle correctness as follows:

TC = 100 · |TA|
min(|TG|, |TH |)

. (21)

4.3.4 Ortholog Correctness (OC)
When the true alignment is not known, we cannot use node
correctness to directly assess the quality of aligned pairs.
Instead, we need to use other measures as a proxy for poten-
tial ortholog pairs. Here, we use Gene Ontology (GO) [44]
to evaluate matches. We separately evaluate based on three
independent branches of GO, namely Biological Process
(BP), Molecular Function (MF), and Cellular Component
(CC). To avoid over-counting terms, we follow suggestions
in the literature [45] and focus on the annotations that are at
the shortest path distance of 5 from the root of GO hierarchy.
Moreover, to avoid terms that are predicted based on the
sequence similarity, we only include the set of experimental
annotations, namely terms with evidence codes EXP, IDA,
IPI, IMP, IGI, and IEP. The final dataset includes 15, 595
BP terms, 4, 221 MF terms, and 2, 761 CC terms.

To assess a pair of aligned nodes m(ii′) = 1, we first
identify the annotation sets: FBP(vi),FMF(vi),FCC(vi) for vi
and FBP(vi′),FMF(vi′),FCC(vi′) for vi′ . Then, we score the

alignment pairs for a fixed branch of GO by evaluating the
significance of the observed overlap among the annotations
of vi and vi′ , quantified as O = |F (vi) ∩ F (vi′)|. Instead
of using the Jaccard index, which only considers the size
of union and intersection sets, we propose a statistical test
based on the hypergeometric test.

In this formulation, the null model is that annotations
are drawn at random from the universe of terms. Let U
be the number of terms for the current comparision (for
instance, U = 2, 761 if we are scoring based on the CC
terms). Let P = |F (vi)| and Q = |F (vi′)|. We need to assess
the probability that a random set of P terms drawn without
replacement from the universe set U has O or more terms
in common with the set F (vi′). The hypergeometric dis-
tribution provides a means to compute these probabilities.
Let HGpdf(x|U,P,Q), for O ≤ x ≤ Q, be the probability
of seeing an intersection of size x. Using this notation, the
overall p-value can be computed as:

p-value(O) =

min(P,Q)∑
x=O

HGpdf(x|U,P,Q). (22)

Note that this p-value is specific to a single pair (i, i′), and
thus,O,P, andQ need to be determined by that context. Us-
ing the Bonferroni correction method to correct for multiple
hypothesis testing, we can identify the final set of ortholog
pairs as OA = {ii′ | p-value(Oii′) ≤ τ/|EA| and m(ii′) =
1}. The ortholog correctness score then reports the fraction
of matches with biological significance given the GO anno-
tations:

OC = 100 · |OA|
|EA|

. (23)

In all our experiments, we used a threshold of τ = 0.05 to
declare a p-value as significant.

4.4 Experimental settings
4.4.1 Parameter tunning
Both the IsoRank and the BP alignment methods depend
on a parameter to control the weight of sequence similarity
and topological similarity in their iterative algorithms. Also,
for GHOST, we can tune these weights based on the final
combination. We evaluate these methods with:

IsoRank 1− α is the sequence weight
α is the topological weight
α = 0.15, 0.5, 0.85

BP α is the sequence weight
β is topological weight
(α, β) = (0.15, 0.85), (0.5, 0.5), (0.85, 0.15)

GHOST 1− α is the sequence weight
α is the topological weight
α = 0.85, 0.5, 0.85, 1

(Note that α means something slightly different for each
algorithm.)

These points span a range between low and high
topological influence (and high to low sequence influ-
ence). For TAME, we only have the α parameter that
corresponds to the extent of included shift. To tune
this parameter, we run the algorithm using values of
the shift parameter over a log-linear search space (α ∈

9

{0, 10−3, 10−2, 10−1, 1, 101, 102, 103}) and choose the max-
imum based on the number of aligned triangles. We only
report the value of the shift parameter with the best per-
formance. The contrained and full formulations of TAME
have greatly different nonzeros in the product tensors. To
this end, we run the parameter tuning phase for each of
them independently. In case of a random graph ensemble in
NAPAbench, we compute the optimal shift values for each
pair of networks, independently, and then use a majority
voting technique to identify the value that performs the
best in majority of alignments. More recent methods such as
the generalized eigenproblem adaptive power (GEAP) [46]
have been proposed as an extension of SS-HOPM that can
identify an adaptive shift in each iteration using the Hessian
matrix of tensor-vector product.

4.4.2 Implementation
We have implemented both sparse and full version of the
TAME algorithm in C/C++, which is accessible from https:
//github.com/shmohammadi86/TAME. Additionally, we
implemented GHOST topological similarity computation in
Matlab. For Belief Propagation and IsoRank algorithms,
we used the NetAlign Matlab package which is imple-
mented by one of the authors [31]. Finally, we packaged all
Matlab codes, together with the evaluation codes/datasets,
which is available for download from https://github.com/
shmohammadi86/HigherOrder-NetAlign.

4.5 NAPABench evaluation
We aligned each pair of networks (a total of ten) separately
using the different alignment methods. The tuned value of
α for cTAME was 0 and for TAME it was 10−1, based on
some simple tie-breaking rules. Table 3 summarizes each
of the evaluation measures, and provides their mean and
standard deviation across all aligned networks. Methods in
this table are sorted alphabetically.

In Figure 1(a), we display a list of methods sorted by
their node correctness score to illustrate how the various
methods compare in terms of number of correctly aligned
nodes. In Figure 1(b), we order the methods based on
their aggregate edge and triangle correctness scores. This
illustrates how the methods compare in terms of the aligned
topology of the graphs. The TAME algorithm performed
the best across all three measures. The second-best method
is the BP algorithm. This method enjoys a substantial ad-
vantage in that it cannot generate any new homolog infor-
mation beyond what is given by sequence similarities. For
the NAPAbench experiments, this is guaranteed to contain
the correct alignment. The poor performance of GHOST is
understandable in this setting because it uses eigenvalue
distributions of local subgraphs. Eigenvalue distributions
of random graphs typically follow various well-known dis-
tributions. For instance, the eigenvalues of an Erdős-Rényi
graph obey the Wigner semi-circle law (with one outlier).
It is likely that because of the random graphs generated
in NAPAbench, the local subgraph neighborhood densities
follow similar patterns, thus making it almost impossible
for GHOST to exploit the spectral signatures. We believe
it is likely the optimized matching routine in the authors’
implementation of the GHOST method is able to work
around these difficulties.

4.6 Alignment of human versus yeast interactomes

To assess the performance of different alignment methods
when applied to real networks, we ran experiments on
the yeast and human interactomes. The optimal value of
α for the shift parameter in TAME and cTAME are 10
and 0.1, respectively. Recall that we cannot compute node
correctness in this case as the true orthologs are unknown.
Thus, in this case, we treat the ortholog correctness scores
as a proxy.

Table 4 summarizes the various measures computed for
each alignment method. These methods are sorted alphabet-
ically, and corresponding columns are related to topological
(edge and triangle correctness) and biological measures
(ortholog correctness) of the alignment. Figures 2(a) and 2(b)
illustrates the aggregate biological and topological measures
sorted individually based on their performance. Unlike NA-
PAbench we observe a considerable difference among the
methods on these two evaluation components.

In terms of topological correctness, the cTAME method
is among the worst and the TAME method is the best by
a considerable margin. In contrast, for the ortholog correct-
ness measures, the cTAME method is slightly better than
the various results produced by BP, which is turn, is only
slightly better than sequence similarity alone (recall that BP
benefits from a substantial advantage in the reduced search
space). The cTAME method outperformed all of the other
algorithmic methods on each of the ortholog correctness
measures, which suggests that triangles in general are more
informative than edges when aligning networks. Addition-
ally, both BP and cTAME outperform pure sequence sim-
ilarities, which means that using topology can effectively
differentiate between potential orthologs.

We have a number of potential explanations for the
observed disparity between the ortholog and the topolog-
ical evaluations. Our results indicate that there is a large
region of the PPIs that is topologically similar between
the human and yeast (and found by TAME), which is
not present among the homologs (and hence, missed by
cTAME). The existence of this large, triangle-enriched core
can be an artifact of including many false positive edges
in the graphs G and H . These results also indicate that
TAME is particularly sensitive to correlated errors in the
network. The issue with correlated errors is that the number
of possible triangles induced by false edges grows (at worst)
cubically with the size of a mismatched region of the graph,
whereas the number of edges grows (at worst) quadratically.
Hence, it is possible for a small set of correlated mistakes to
greatly impact the solutions of TAME. Pruning edges that
are incident to nodes with no known homology is a stringent
measure that reduces this possibility. Another possible cause
can be attributed to the large evolutionary distance between
human and yeast, resulting in divergence of a large number
of homologous genes, for which topological clues may be
still conserved. Finally, we note that there is a significant
bias in the GO annotations towards homolog pairs and these
pairs are more extensively studied in the literature due to
their importance. To this end, cTAME does not identify
de novo orthologs without sequence similarity evidence,
whereas TAME is capable of reporting missing ortholog
pairs.

10

TABLE 3
Summary statistics for different alignment methods applied to the NAPAbench synthetic random networks (sorted alphabetically)

Method Node Correctness (NC) Edge Correctness (EC) Triangle Correctness (TC)

BP (α=0.15) 74.32 ± 8.76 47.99 ± 9.42 30.93 ± 12.19
BP (α=0.50) 79.49 ± 6.93 53.07 ± 7.67 37.65 ± 9.90
BP (α=0.85) 89.72 ± 3.35 64.08 ± 3.77 52.27 ± 4.80

Ghost (α=0.15) 71.25 ± 1.69 44.79 ± 1.88 27.02 ± 2.34
Ghost (α=0.50) 72.94 ± 1.55 47.42 ± 1.70 30.75 ± 2.05
Ghost (α=0.85) 60.08 ± 1.38 34.81 ± 1.49 21.03 ± 1.21
Ghost (α=1.00) 4.05 ± 0.57 1.27 ± 0.32 0.04 ± 0.03

IsoRank (α=0.15) 73.83 ± 1.49 52.66 ± 1.98 33.13 ± 2.11
IsoRank (α=0.50) 78.88 ± 1.28 58.70 ± 1.61 40.98 ± 1.99
IsoRank (α=0.85) 83.58 ± 0.98 64.52 ± 1.23 48.91 ± 1.75

SeqSim 69.09 ± 1.81 42.47 ± 1.97 23.83 ± 2.26

cTAME (α=0) 99.42 ± 0.13 73.85 ± 0.27 65.69 ± 0.31
TAME (α=1) 91.23 ± 0.99 74.03 ± 0.99 63.56 ± 1.26

0

10

20

30

40

50

60

70

80

90

100

c
T

A
M

E
 (

α
=

0
)

T
A

M
E

 (
α

=
0

.1
)

B
P

 (
α

=
0

.8
5

)

Is
o

R
a

n
k

 (
α

=
0

.8
5

)

B
P

 (
α

=
0

.5
0

)

Is
o

R
a

n
k

 (
α

=
0

.5
0

)

B
P

 (
α

=
0

.1
5

)

Is
o

R
a

n
k

 (
α

=
0

.1
5

)

G
h

o
s

t
(α

=
0

.5
0

)

G
h

o
s

t
(α

=
0

.1
5

)

S
e

q
S

im

G
h

o
s

t
(α

=
0

.8
5

)

G
h

o
s

t
(α

=
1

.0
0

)

Node Correctness (NC)

(a) Node correctness

0

20

40

60

80

100

120

140

c
T

A
M

E
 (

α
=

0
)

T
A

M
E

 (
α

=
0

.1
)

B
P

 (
α

=
0

.8
5

)

Is
o

R
a

n
k

 (
α

=
0

.8
5

)

Is
o

R
a

n
k

 (
α

=
0

.5
0

)

B
P

 (
α

=
0

.5
0

)

Is
o

R
a

n
k

 (
α

=
0

.1
5

)

B
P

 (
α

=
0

.1
5

)

G
h

o
s

t
(α

=
0

.5
0

)

G
h

o
s

t
(α

=
0

.1
5

)

S
e

q
S

im

G
h

o
s

t
(α

=
0

.8
5

)

G
h

o
s

t
(α

=
1

.0
0

)

Edge Correctness (EC)

Triangle Correctness (TC)

(b) Topological correctness

Fig. 1. Comparison of alignment quality on NAPAbench synthetic dataset based on the mean quality from 10 networks.

4.7 TAME’s iteration behavior

We now make a few comments on the various iterations
produced by the TAME method. A curious behavior of
TAME is that in almost all cases, the best solution occured
within the first few iterations. The same characteristic is
observed both for aligning the NAPAbench and real PPI
networks. We note that since SS-HOPM does not have any
means to internally avoid many-to-many mappings, the
dominant eigenvector of T has a unique structure in which
every node in one graph points to the most promising nodes
in the other graph. In order to visualize this characteristic,
we ran TAME over the Family 1 dataset in NAPAbench and
visualized the structure of similarity matrix in each iteration.
Figure 3 illustrates the first 15 iterations of the algorithm. We
permuted rows and columns to highlight the orthologies as
the diagonal of the matrix. As such, the iterations start with

all sequence similarities scattered around diagonal elements
(Iteration 1), and many false positive off-diagonal pairs.
As iterations continue, we start by finding a block diago-
nal structure (Iterations 2-5), representing triangle enriched
regions in the networks. As the process further continues,
one of the blocks emerges as the stationary point (Itera-
tions 6-11). Subsequent iterations localize around a solution
induced by this block (Iterations 12-15). We are currently
seeking theoretical characterizations of this behavior that
may suggest improved methods. For instance, it would be
useful to avoid the transition to only one block that occurs
during Iterations 6-11.

5 CONCLUDING REMARKS AND FUTURE WORK

In this paper we propose an alternative formulation for the
network alignment problem, which allows us to use higher-

11

TABLE 4
Summary statistics for different alignment methods applied to the yeast and human interactomes (sorted alphabetically)

Method Edge Correctness Triangle Correctness Ortholog Correctness
Bio. Processes

Ortholog Correctness
Mol. Functions

Ortholog Correctness
Cell. Components

BP (α=0.15) 10.69 2.95 16.22 2.03 33.20
BP (α=0.50) 10.69 2.96 16.20 2.04 33.21
BP (α=0.85) 10.68 2.95 16.24 2.05 33.24

Ghost (α=0.15) 8.45 4.97 15.49 2.34 30.51
Ghost (α=0.50) 9.58 5.93 15.62 2.22 30.48
Ghost (α=0.85) 10.08 6.80 13.03 1.54 29.62
Ghost (α=1.00) 8.10 6.55 5.81 0.10 26.09

IsoRank (α=0.15) 9.06 2.80 15.64 2.31 30.53
IsoRank (α=0.50) 10.55 3.71 15.93 2.31 31.54
IsoRank (α=0.85) 11.86 5.16 16.29 2.36 32.31

SeqSim 6.52 1.99 16.94 2.66 31.70

cTAME (α=0.1) 8.60 2.71 16.98 2.45 33.24
TAME (α=10) 16.58 15.50 15.03 1.74 32.55

0

10

20

30

40

50

60

c
T

A
M

E
 (

α
=

0
.1

)

B
P

 (
α

=
0

.8
5

)

B
P

 (
α

=
0

.1
5

)

B
P

 (
α

=
0

.5
0

)

S
e

q
S

im

Is
o

R
a

n
k

 (
α

=
0

.8
5

)

Is
o

R
a

n
k

 (
α

=
0

.5
0

)

T
A

M
E

 (
α

=
1

0
)

Is
o

R
a

n
k

 (
α

=
0

.1
5

)

G
h

o
s

t
(α

=
0

.1
5

)

G
h

o
s

t
(α

=
0

.5
0

)

G
h

o
s

t
(α

=
0

.8
5

)

G
h

o
s

t
(α

=
1

.0
0

)

Biological Processes

Molecular Functions

Cellular Components

(a) Ortholog correctness

0

5

10

15

20

25

30

35

T
A

M
E

 (
α

=
1

0
)

Is
o

R
a

n
k

 (
α

=
0

.8
5

)

G
h

o
s

t
(α

=
0

.8
5

)

G
h

o
s

t
(α

=
0

.5
0

)

G
h

o
s

t
(α

=
1

.0
0

)

Is
o

R
a

n
k

 (
α

=
0

.5
0

)

B
P

 (
α

=
0

.1
5

)

B
P

 (
α

=
0

.5
0

)

B
P

 (
α

=
0

.8
5

)

G
h

o
s

t
(α

=
0

.1
5

)

Is
o

R
a

n
k

 (
α

=
0

.1
5

)

c
T

A
M

E
 (

α
=

0
.1

)

S
e

q
S

im

Edge Correctness (EC)

Triangle Correctness (TC)

(b) Topological correctness

Fig. 2. Comparison of alignment quality on NAPAbench synthetic dataset based on the mean quality from 10 networks.

order substructures to drive the alignment process. We
provide the necessary machinery to encode different motifs
using tensors; and, as a proof of concept, we use triangle
motifs to show how the framework can be applied to the
network alignment problem. We show that our method
outperforms state of the art techniques, both in the context
of real and synthetic datasets.

The result of our method is a set of topological scores
that can be combined with many of the other ideas in the
network alignment literature. For instance, the information
contained in the TAME iterates seems to be orthogonal to
the information produced by a method such as GHOST. We
believe it is likely that these different similarity scores can
be integrated—perhaps by using local features of the graph
topology to indicate which is more reliable—and the result

should be better than either.
Our ongoing work is focused on optimizing the implicit

kernel, enhancing mixing properties of sequence and topo-
logical similarities, extending the main iteration to simulta-
neous subspace iteration with nonnegative orthogonaliza-
tion, combining motifs of different sizes into the optimiza-
tion problem, and understanding the theoretical basis of the
success of the early iterations.

APPENDIX

Patro et al. [36] have proposed an algorithm for global
network alignment, called GHOST, that consist of two main
components: (i) a novel topological similarity score, (ii) a
greedy search algorithm to identify best matches consider-
ing sequence and topological similarities. Here, we focus

12

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4 (e) Iteration 5

(f) Iteration 6 (g) Iteration 7 (h) Iteration 8 (i) Iteration 9 (j) Iteration 10

(k) Iteration 11 (l) Iteration 12 (m) Iteration 13 (n) Iteration 14 (o) Iteration 15

Fig. 3. The first 15 iterations of TAME applied to Family 1 in the NAPAbench illustrated as a matrix plot of iterates x reshaped to a X where the
true orthologs lie on the diagonal. These illustrate how the best alignments result from the information in the first few (2-5) iterations.

on the former component, as we use maximum bipartite
matching for all alignment algorithms to provide a fair
comparison. The idea behind the GHOST similarity score
is to define a spectral signature for each node, which can be
later used to assess their topological distances.

To this end, they first construct induced subgraphs of
different radii up to distance k around each node, where k
is the calculated based on shortest path distance in the undi-
rected, unweighted graphs of protein-protein interactions.
Denote the induced subgraph of distance k by Gk, and
its corresponding adjacency matrix by AGk

. To construct
the normalized Laplacian matrix of AGk

, we first need to
compute the degree matrix as follows:

DGk
(i, j) =

{∑
k∈NGk

(i) AGk
(i, k) if i = j

0 otherwise.
(24)

Using the degree matrix DGk
, we can define the normalized

Laplacian matrix as follows:

LGk
= D

1
2

Gk
(I−AGk

)D
1
2

Gk
(25)

where I is the identity matrix. The spectrum of matrix
LGk

, defined as the sorted list of its eigenvalues, contains
critical information about the structural properties of the
induced subgraph Gk. However, for subgraphs of differ-
ent radii this vector has varying sizes. To compare these
eigenvalues, Patro et al. used a kernel density estimate of
the eigenvalue distribution for the corresponding Laplacian
matrix of different subgraphs (but with the same radii),
which is then used as the topological signature of node vi
represented by Ski . To compute the distance between the
topological signature of a pair vertices vi and vi′ , where

vi ∈ G and vi′ ∈ H , they use a well-known information-
theoretic distance [47] defined as follows:

dk(i, i′) = DJS(Ski ,Ski′). (26)

In this formulation, DJS is the Jensen-Shannon divergence,
which is a symmetrized version of Kullback-Leibler diver-
gence.1 They use a radial-basis kernel with standard de-
viation σ2 and σ = 10−2 for the density estimate. In
order to combine distance measures defined over different
subgraphs of varying degrees and compute the overall
topological distance, they use the following definition:

Dtopo(i, i
′) =

4∑
k=1

dk(i, i′). (27)

In order to transform this these topological distances into
topological similarity measure, we tried both min/max nor-
malization, where Stopo =

Dtopo−min(Dtopo)
max(Dtopo)−min(Dtopo)

, as well as
log-normalization, in which Stopo = −log(Dtopo). We eval-
uated both of these transformations over the NAPAbench
dataset and observed that log-normalization yields better
results. Thus, we used this transformation throughout our
study. Finally, in order to mix sequence and topological
similarities, we first scale each matrix so that the nth largest

1. Given a pair of distributions, P and Q, their Kullback-Leibler
divergence is defined as DKL(P ‖ Q) =

∑
i P (i)

P (i)
Q(i)

. The KL diver-
gence is not symmetric and the Jensen-Shannon divergence computes a
convex combination of KL divergences between P andQ to the average
of these two distributions: DJS = 1

2
DKL(P ‖ M) + 1

2
DKL(Q ‖ M),

where M = 1
2
(P +Q).

REFERENCES 13

element of these matrices, where n = min(|(V)G|, |(V)G|),
are equal. Then, we compute the convex combination as:

XGHOST-Topo(i, i′) = αStopo(i, i′) + (1− α)W(i, i′) (28)

where W = unvec(w) represent the sequence similarity
scores.

ACKNOWLEDGMENTS

This work is supported by the Center for Science of Informa-
tion (CSoI), an NSF Science and Technology Center, under
grant agreement CCF-0939370, as well as by NSF Grant BIO-
1124962, NSF Grant CCF-1149756, NSF Grant IIS-1422918,
and the DARPA SIMPLEX Program. This material is based
upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, Applied Mathematics program. Sandia National
Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE–AC04–94AL85000.

REFERENCES

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, et al., “Network
motifs: simple building blocks of complex networks.,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[2] N. Kashtan, S. Itzkovitz, et al., “Efficient sampling
algorithm for estimating sub-graph concentrations
and detecting network motifs,” Bioinformatics, vol. 20,
pp. 1746–1758, 2004.

[3] V. Batagelj and A. Mrvar, “Pajek-analysis and visual-
ization of large networks,” Springer-Verlag, vol. 2265,
pp. 77–103, 2003.

[4] F. Schreiber and H. Schwöbbermeyer, “Mavisto: a tool
for the exploration of network motifs,” Bioinformatics,
vol. 21, pp. 3572–3574, 2005.

[5] S. Wernicke and F. Rasche, “Fanmod: a tool for
fast network motif detection,” Bioinformatics, vol. 22,
pp. 1152–1153, 2006.

[6] Z. R. M. Kashani, H. Ahrabian, E. Elahi, et al.,
“Kavosh: a new algorithm for finding network mo-
tifs.,” BMC bioinformatics, vol. 10, no. 318, Jan. 2009.

[7] S. Mangan and U. Alon, “Structure and function of
the feed-forward loop network motif,” Proceedings
of the National Academy of Sciences, vol. 100, no. 21,
pp. 11 980–11 985, Oct. 2003.

[8] S. S. Shen-Orr, R. Milo, S. Mangan, et al., “Network
motifs in the transcriptional regulation network of
Escherichia coli.,” Nature genetics, vol. 31, no. 1, pp. 64–
68, 2002.

[9] S. S. Chung, A. Pandini, A. Annibale, et al., “Bridging
topological and functional information in protein in-
teraction networks by short loops profiling,” Scientific
Reports, vol. 5, p. 8540, Feb. 2015.

[10] A.-L. Barabási and Z. N. Oltvai, “Network biology:
understanding the cell’s functional organization,” Na-
ture Reviews Genetics, vol. 5, no. 2, pp. 101–113, Feb.
2004.

[11] S Wuchty, Z. N. Oltvai, and A.-L. Barabási, “Evolu-
tionary conservation of motif constituents in the yeast
protein interaction network,” Nature Genetics, vol. 35,
no. 2, pp. 176–179, Oct. 2003.

[12] L. H. Hartwell, J. J. Hopfield, S. Leibler, et al., “From
molecular to modular cell biology,” Nature, vol. 402,
no. 6761 Suppl, 1999.

[13] T. G. Kolda and J. R. Mayo, “Shifted power method for
computing tensor eigenpairs,” SIAM J. Matrix Analysis
Applications, vol. 32, no. 4, pp. 1095–1124, 2011.

[14] O. Šváb, “Exploiting patterns in ontology mapping,”
in Proceedings of the 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference
(ISWC/ASWC2007), Busan, South Korea, K. Aberer, K.-
S. Choi, N. Noy, et al., Eds., ser. LNCS, vol. 4825,
Berlin, Heidelberg: Springer Verlag, 2007, pp. 950–954.

[15] M. Chertok and Y. Keller, “Efficient high order match-
ing,” in Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 2010, pp. 2205–2215.

[16] S. M. E. Sahraeian and B.-J. Yoon, A Network Synthesis
Model for Generating Protein Interaction Network Fami-
lies, 2012.

[17] L.-H. Lim, “Singular Values and Eigenvalues of Ten-
sors: A Variational Approach,” in CAMSAP’05: Pro-
ceeding of the IEEE International Workshop on Compu-
tational Advances in Multi-Sensor Adaptive Processing,
2005, pp. 129–132.

[18] T. G. Kolda and B. W. Bader, “Tensor decomposi-
tions and applications,” SIAM Review, vol. 51, no. 3,
pp. 455–500, 2009.

[19] R. B. Kelley and \textitet. el., “Conserved pathways
within bacteria and yeast as revealed by global protein
network alignment,” PNAS, vol. 100(20), 2003.

[20] B. P. Kelley, B. Yuan, F. Lewitter, et al., “PathBLAST:
a tool for alignment of protein interaction networks,”
Nucleic Acids Research, vol. 32, no. Web-Server-Issue,
pp. 83–88, 2004.

[21] R. Sharan, T. Ideker, B. P. Kelley, et al., “Identification
of protein complexes by comparative analysis of yeast
and bacterial protein interaction data,” Journal of Com-
putational Biology, vol. 12, no. 6, pp. 835–846, 2005.

[22] R. Sharan, S. Suthram, R. M. Kelley, et al., “Conserved
patterns of protein interaction in multiple species.,”
Proceedings of the National Academy of Sciences of the
United States of America, vol. 102, no. 6, pp. 1974–1979,
2005.

[23] J Flannick, A Novak, B. S. Srinivasan, et al., “Graem-
lin: general and robust alignment of multiple large
interaction networks,” Genome Research, vol. 16, no. 9,
pp. 1169–1181, Sep. 2006.

[24] J. Flannick, A. F. Novak, C. B. Do, et al., “Automatic
parameter learning for multiple network alignment,”
in RECOMB, 2008, pp. 214–231.

[25] M. Koyutürk, A. Grama, and W. Szpankowski, “Pair-
wise local alignment of protein interaction networks
guided by models of evolution,” in RECOMB, 2005,
pp. 48–65.

[26] M. Koyutürk, Y. Kim, U. Topkara, et al., “Pairwise
alignment of protein interaction networks,” Journal of
Computational Biology, vol. 13(2), pp. 182–199, 2006.

14

[27] R. Singh, J. Xu, and B. Berger, “Pairwise global align-
ment of protein interaction networks by matching
neighborhood topology,” in Proceedings of the 11th
Annual International Conference on Research in Compu-
tational Molecular Biology, ser. RECOMB’07, Oakland,
CA, USA: Springer-Verlag, 2007, pp. 16–31.

[28] R. Singh, J. Xu, and B. Berger, “Global alignment of
multiple protein interaction networks with applica-
tion to functional orthology detection,” PNAS, vol.
105, no. 35, pp. 12 763–12 768, 2008.

[29] G. Klau, “A new graph-based method for pairwise
global network alignment,” BMC Bioinformatics, vol.
10, no. Suppl 1, S59, 2009.

[30] M. El-Kebir, J. Heringa, and G. W. Klau, “Lagrangian
relaxation applied to sparse global network align-
ment,” CoRR, vol. abs/1108.4358, 2011.

[31] M. Bayati, D. F. Gleich, A. Saberi, et al., “Message-
Passing Algorithms for Sparse Network Alignment,”
ACM Trans. Knowl. Discov. Data, vol. 7, no. 1, 3:1–3:31,
Mar. 2013.

[32] O. Kuchaiev, T. Milenkovic, V. Memisevic, et al.,
“Topological network alignment uncovers biological
function and phylogeny.,” Journal of the Royal Society,
Interface / the Royal Society, vol. 7, no. 50, pp. 1341–54,
Sep. 2010.

[33] T Milenković, W. L. Ng, W Hayes, et al., “Optimal
network alignment with graphlet degree vectors,”
Cancer Inform, vol. 9, 2010.

[34] O. Kuchaiev and N. Przulj, “Integrative network
alignment reveals large regions of global network sim-
ilarity in yeast and human.,” Bioinformatics (Oxford,
England), vol. 27, no. 10, pp. 1390–6, May 2011.

[35] V. Memišević and N. Pržulj, “C-GRAAL: common-
neighbors-based global GRAph ALignment of bio-
logical networks,” Integrative biology : quantitative bio-
sciences from nano to macro, vol. 4, no. 7, pp. 734–43, Jul.
2012.

[36] R. Patro and C. Kingsford, “Global network alignment
using multiscale spectral signatures.,” Bioinformatics
(Oxford, England), vol. 28, no. 23, pp. 3105–14, Dec.
2012.

[37] G. Ballard, T. G. Kolda, and T. Plantenga, “Efficiently
computing tensor eigenvalues on a gpu,” in IPDPS
Workshops, 2011, pp. 1340–1348.

[38] W. K. Kim and E. M. Marcotte, “Age-Dependent
Evolution of the Yeast Protein Interaction Network
Suggests a Limited Role of Gene Duplication and
Divergence,” PLoS Computational Biology, vol. 4, no.
11, R. Nussinov, Ed., e1000232, Nov. 2008.

[39] J. C. Wootton and S. Federhen, “Statistics of local
complexity in amino acid sequences and sequence
databases,” Computers & Chemistry, vol. 17, no. 2,
pp. 149–163, Jun. 1993.

[40] W. R. Pearson and D. J. Lipman, “Improved tools for
biological sequence analysis,” Proc. Natl. Acad. Sci.,
vol. 85, pp. 2444–2448+, 1988.

[41] T. F. Smith and M. S. Waterman, “Identification of
common molecular subsequences.,” Journal of molec-
ular biology, vol. 147, no. 1, pp. 195–7, Mar. 1981.

[42] M. Bayati, M. Gerritsen, D. Gleich, et al., “Algorithms
for large, sparse network alignment problems,” in
ICDM, 2009, pp. 705–710.

[43] G. Kollias, M. Sathe, S. Mohammadi, et al., “A fast
approach to global alignment of protein-protein inter-
action networks.,” BMC research notes, vol. 6, no. 1,
p. 35, Jan. 2013.

[44] M Ashburner, C. A. Ball, J. A. Blake, et al., “Gene
ontology: tool for the unification of biology. The Gene
Ontology Consortium.,” Nature genetics, vol. 25, no. 1,
pp. 25–9, May 2000.

[45] C. Clark and J. Kalita, “A comparison of algo-
rithms for the pairwise alignment of biological net-
works.,” Bioinformatics (Oxford, England), vol. 30, no.
16, pp. 2351–2359, 2014.

[46] T. G. Kolda and J. R. Mayo, “An adaptive shifted
power method for computing generalized tensor
eigenpairs,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 35, no. 4, pp. 1563–1581, 2014.

[47] A. Banerjee, “Structural distance and evolutionary
relationship of networks,” BioSystems, vol. 107, no. 3,
pp. 186–196, 2012.

